| Course Title | Deep Representation Learning | Course Code | CS 6XXX | | | | | |---|--|--|---|--|--|---|---| | Dept/
Specialization | Computer Science Engineering
and Electronics Engineering | Structure
(LTPC) | 3 | 0 | 2 | 4 | | | To be offered for | M.Tech and Dual Degree Students
(CSE and Electronics), PG and PhD | Status | Core | | Elective = | | | | Faculty Proposing the course | Dr. Umarani J. | Туре | New | • | Modification | | | | Recommendation fi | rom the DARC - attached. | Date of DARC | 09-10-2024 | | | | | | External Expert(s) | Prof. Pabitra Mitra , CSE Dept , IIT Kl
Prof. Surya Prakash, CSE, IIT Indore | naragpur | | | | | | | Pre-requisite | COT | Submitted for ap | proval 08-10-2024 | | | | | | Learning
Objectives | To introduce students to the fundament
importance in extracting meaningful fe | tal concepts of repre
atures from data for | sentation learning and explain its
machine/deep learning tasks. | | | | | | Learning
Outcomes | Apply representation learning techniques to various data types. Build and optimize neural networks for supervised tasks. Implement unsupervised models like autoencoders and GANs. Use transfer, self-supervised, and semi-supervised learning methods. I. Introduction to Representation Learning:Overview of representation learning, its importance, and | | | | | | | | Contents of the course(With approximate break-up of hours for UT/P) | applications. Foundations of neural (12) 2. Supervised Representation Learn Networks (CNNs), Transformer, Vis 3. Unsupervised Representation Learn and Variational Autoencoders (VAE: 4. Few-shot and Meta Learning: Int framework for few-shot learning Optimization-based meta learning, G 5. Semi and Self-Supervised Learni Learning, Weakly supervised learn Learning, Contrastive losses, Memnegative mining (6) 6. Graph Representation Learning: Itembeddings. Semi-Supervised Classif. 7. Representation Learning for Tim Temporal Convolutional Networks (Practice Sessions: 1. Neural Networks and Basic Training 2. Training a Convolutional Neural Classification (4) 3. Implementing Autoencoders for Fealmage Generation, Contrastive Representation Represe | ning: Deep neural ion Transformers (\text{Y} raing: Autoencoder s), Score/Diffusion roduction to Multi g, Metric learning ienerative meta lear ing: Consistency Ro ing methods, Self- ory-bank technique introduction to Grap ification with Graph ne Series: Recurre TCNs)(4) . Implementing and Network (CNN) ature Extraction Gesentation Learning | networks /iT) (6) s, Generati based mode -task and g, compar, ning (6) egularizatio -supervised s, BYOL, ph Neural n Convoluti nt Neural d Visualizir , Vision enerative A with SimCl | (DNNs) ve Adverels (4) Transfer ators and Constant Consta | , Convo
sarial Ne
learning
d relation
relabel M
ntrastive
SimCLF
(GNNs)
works (4)
s (RNNs
or Featurners (V
al Netwo | hational
tworks (
, Meta-lonal ne
fethods,
Represe
, MoCo
, node a
, LSTN
e Extrac
iT) for | Neural
(GANs)
learning
etworks,
Active
entation
o, Hard
and edge
Ms, and
tion (4)
Image | | | Semi-Supervised Learning with Gra
and TCNs, Multimodal Representation | ph Convolutional 1
on Learning with Cr | oss-Modal | Retrieval | (2)
2016. IS | | | | Text Book | 4. Semi-Supervised Learning with Gra | ph Convolutional l
on Learning with Cr
engio, Y., and Courv
Language Procession | oss-Modal
ville, A., M
ng by Zhiyi | Retrieval
IT Press,
uan Liu, 2 | 2016. IS
2023,Spri | BN:
inger, IS | LSTMs
BN |